Газораспределение двухтактных двигателей. Типы продувки горючей смеси двигателя внутреннего сгорания, основы устройства и работы катерных двигателей водных судов, как устроено спортивное судно, ремонт катера, ремонт водного судна, как сделать водное судно

Газораспределение двухтактных двигателей. Типы продувки горючей смеси двигателя внутреннего сгорания, основы устройства и работы катерных двигателей водных судов, как устроено спортивное судно, ремонт катера, ремонт водного судна, как сделать водное судно

Качество работы двигателя внутреннего сгорания автомобиля зависит от многих факторов, таких как мощность, коэффициент полезного действия, объем цилиндров.

Большое значение в моторе имеют фазы газораспределения, и от того, как происходит перекрытие клапанов, зависит экономичность ДВС, его приемистость, стабильность работы на холостых оборотах.
В стандартных простых двигателях изменение фаз ГРМ не предусматривается, и такие моторы не отличаются высокой эффективностью. Но в последнее время все чаще на автомашинах передовых компаний, таких как Хонда, Мерседес, Тойота, Ауди все чаще стали применяться силовые агрегаты с возможностью изменения смещения распределительных валов по мере изменения количества оборотов в ДВС.

Диаграмма фаз газораспределения двухтактного двигателя

Двухтактный двигатель отличается от четырехтактного тем, что рабочий цикл у него проходит за один оборот коленвала, в то же время на 4-тактных ДВС он происходит за два оборота. Фазы газораспределения в ДВС определяются продолжительностью открытия клапанов – выпускных и впускных, угол перекрытия клапанов обозначается в градусах положения к/в.

В 4-тактных моторах цикл наполнения рабочей смеси происходит за 10-20 градусов до того, как поршень придет в верхнюю мертвую точку, и заканчивается через 45-65º, а в некоторых ДВС и позднее (до ста градусов), после того как поршень пройдет нижнюю точку. Общая продолжительность впуска в 4-тактных моторах может длиться 240-300 градусов, что обеспечивает хорошую наполняемость цилиндров рабочей смесью.

В 2-тактных движках продолжительность впуска топливовоздушной смеси длится на повороте коленвала приблизительно 120-150º, также меньше длится и продувка, поэтому наполнение рабочей смесью и очистка выхлопных газов у двухтактных ДВС всегда хуже, чем у 4-тактных силовых агрегатов. На рисунке ниже показана диаграмма фаз газораспределения двухтактного мотоциклетного двигателя движка К-175.

Двухтактные движки применяются на автомобилях нечасто, так как они обладают более низким КПД, худшей экономичностью и плохой очисткой выхлопных газов от вредных примесей. Особенно актуален последний фактор – в связи с ужесточением норм экологии важно, чтобы в выхлопе двигателя содержалось минимальное количество CO.

Но все же у 2-хтактных ДВС есть и свои преимущества, особенно у дизельных моделей:

  • силовые агрегаты компактнее и легче;
  • они дешевле стоят;
  • двухтактный мотор быстрее разгоняется.

На многих автомобилях в 70-х и 80-х годах прошлого столетия в основном устанавливались карбюраторные двигатели с «траблерной» системой зажигания, но многие передовые компании по производству автомашин уже тогда начали оснащать моторы электронной системой управления двигателем, в которой всеми основными процессами управлял единый блок (ЭБУ). Сейчас практически все современные авто имеют ЭСУД – электронная система применяется не только в бензиновых, но и в дизельных ДВС.

В современной электронике присутствуют различные датчики, контролирующие работу двигателя, посылающие сигналы блоку о состоянии силового агрегата. На основании всех данных от датчиков ЭБУ принимает решение – сколько необходимо подавать топлива в цилиндры на тех или иных нагрузках (оборотах), какой установить угол опережения зажигания.

Датчик фаз газораспределения имеет еще одно название – датчик положения распредвала (ДПРВ), он определяет положение ГРМ относительно коленвала. От его показаний зависит, в какой пропорции будет подаваться топливо в цилиндры в зависимости от количества оборотов и угла опережения зажигания. Если ДПРВ не работает, значит, фазами ГРМ не контролируются, и ЭБУ не «знает», в какой последовательности необходимо подавать топливо в цилиндры. В результате возрастает расход топлива, так как бензин (солярка) одновременно подается во все цилиндры, двигатель работает вразнобой, на некоторых моделях авто ДВС вовсе не запускается.

Регулятор фаз газораспределения

В начале 90-х годов 20-го века стали выпускаться первые двигатели с автоматическим изменением фаз ГРМ, но здесь уже не датчик контролировал положение коленвала, а непосредственно сдвигались сами фазы. Принцип работы такой системы следующий:

  • распределительный вал соединяется с гидравлической муфтой;
  • также с этой муфтой имеет соединение и распредшестерня;
  • на холостых и малых оборотах распредшестерня с распредвалом зафиксированы в стандартном положении, как была установлены по меткам;
  • при увеличении оборотов под воздействием гидравлики муфта поворачивает распредвал относительно звездочки (распредшестерни), и фазы ГРМ смещаются – кулачки распредвала раньше открывают клапана.

Одна из первых подобных разработок (VANOS) была применена на моторах M50 компании BMW, первые двигатели с регулятором фаз газораспределения появились в 1992 году. Следует отметить, что сначала VANOS устанавливался только на впускном распредвалу (у моторов M50 двухвальная система ГРМ), a c 1996-го стала использоваться система Double VANOS, с помощью которой уже регулировалось положение выпускного и впускного р/валов.

Какое преимущество дает регулятор фаз ГРМ? На холостом ходу перекрытие фаз газораспределения практически не требуется, и оно в данном случае даже вредит двигателю, так как при сдвиге распредвалов выхлопные газы могут попасть во впускной коллектор, а часть топлива будет попадать в выхлопную систему, полностью не сгорая. Но когда движок работает на максимальной мощности, фазы должны быть максимально широкими, и чем выше обороты, тем больше необходимо перекрытие клапанов. Муфта изменения фаз ГРМ дает возможность эффективно наполнять цилиндры рабочей смесью, а значит, повысить КПД мотора, увеличить его мощность. В тоже время на холостом ходу р/валы с муфтой находятся в исходном состоянии, и сгорание смеси идет в полном объеме. Получается, что регулятор фаз повышает динамику и мощность ДВС, при этом достаточно экономично расходуется топливо.

Система изменения фаз газораспределения (СИФГ) обеспечивает более низкий расход топлива, снижает уровень CO в выхлопных газах, позволяет более эффективно использовать мощность ДВС. У разных мировых автопроизводителей разработана своя СИФГ, применяется не только изменение положения распредвалов, но и уровень поднятия клапанов в ГБЦ. Например, компания Nissan применяет систему CVTCS, которой управляет клапан регулировки фаз газораспределения (электромагнитный клапан). На холостых оборотах этот клапан открыт, и не создает давление, поэтому распредвалы находятся в исходном состоянии. Открывающийся клапан увеличивает давление в системе, и чем оно выше, тем на больший угол сдвигаются распредвалы.

Следует отметить, что СИФГ в основном используются на двигателях с двумя распределительными валами, где в цилиндрах устанавливается по 4 клапана – по 2 впускных и 2 выпускных.

Приспособления для установки фаз газораспределения

Чтобы двигатель работал без перебоев, важно правильно выставить фазы ГРМ, установить в нужном положении распределительные валы относительно коленвала. На всех движках валы выставляются по меткам, и от точности установки зависит очень многое. Если валы выставляются неправильно, возникают различные проблемы:

  • мотор неустойчиво работает на холостых оборотах;
  • ДВС не развивает мощности;
  • происходят выстрелы в глушитель и хлопки во впускном коллекторе.

Если в метках ошибиться на несколько зубьев, не исключено, что могут согнуться клапана, и движок при этом не запустится.

На некоторых моделях силовых агрегатов разработаны специальные приспособления для установки фаз газораспределения. В частности, для двигателей семейства ЗМЗ-406/ 406/ 409 есть специальный шаблон, с помощью которого измеряются углы положения распредвалов. Шаблоном можно проверить существующие углы, и если они выставлены неправильно, валы следует переустановить. Приспособление для 406-х моторов представляет собой набор, состоящий из трех элементов:

  • двух угломеров (для правого и левого вала, они разные);
  • транспортира.

Когда коленчатый вал выставлен в ВМТ 1-го цилиндра, кулачки распредвалов должны выступать над верхней плоскостью ГБЦ под углом 19-20º с погрешностью ± 2,4°, причем, кулачок впускного валика должен быть чуть выше кулачка выпускного распредвала.

Также есть специальные приспособления для установления распредвалов на моторах BMW моделей M56/ M54/ M52. В комплект установки фаз газораспределения ДВС БВМ входит:

Неисправности системы изменения фаз газораспределения

Изменять фазы газораспределения можно различными способами, и последнее время наиболее распространен поворот р/валов, хотя нередко применяется метод изменения величины подъема клапанов, использование распределительных валов с кулачками измененного профиля. Периодически в газораспределительном механизме возникают различные неисправности, из-за которых мотор начинает работать с перебоями, «тупит», в некоторых случаях и вовсе не запускается. Причины возникновения неполадок могут быть разными:

  • неисправен электромагнитный клапан;
  • засорилась грязью муфта изменения фаз;
  • вытянулась цепь газораспределительного механизма;
  • неисправен натяжитель цепи.

Часто при возникающих неисправностях в этой системе:

  • снижаются холостые обороты, в некоторых случаях ДВС глохнет;
  • значительно увеличивается расход топлива;
  • двигатель не развивает обороты, машина порой не разгоняется даже до 100 км/ч;
  • мотор плохо запускается, его приходится гонять стартером несколько раз;
  • слышен стрекот, идущий из муфты СИФГ.

По всем признакам основная причина проблем с двигателем – выход из строя клапана СИФГ, обычно при этом компьютерная диагностика выявляет ошибку этого устройства. Следует отметить, что лампа диагностики Check Engine загорается при этом не всегда, поэтому трудно понять, что сбои происходят именно в электронике.

Часто проблемы ГРМ возникают из-за засорения гидравлики – плохое масло с частицами абразива забивает каналы в муфте, и механизм заклинивает в одном из положений. Если муфту «клинит» в исходном положении, ДВС спокойно работает на ХХ, но совсем не развивает оборотов. В случае, когда механизм остается в положении максимального перекрытия клапанов, движок может плохо запускаться.

К сожалению, на двигатели российского производства СИФГ не устанавливается, но многие автомобилисты занимаются тюнингом ДВС, стараясь улучшить характеристики силового агрегата. Классический вариант модернизации мотора – это установка «спортивного» распредвала, у которого смещены кулачки, изменен их профиль.

У такого р/вала есть свои преимущества:

  • мотор становится приемистым, четко реагирует на нажатие педали газа;
  • улучшаются динамические характеристики автомобиля, машина буквально рвет из-под себя.

Но в таком тюнинге есть и свои минусы:

  • холостые обороты становится неустойчивыми, приходится их выставлять в пределах 1100-1200 об/мин;
  • увеличивается расход топлива;
  • достаточно сложно отрегулировать клапана, ДВС требует тщательной настройки.

Достаточно часто тюнингу подвергаются вазовские двигатели моделей 21213, 21214, 2106. Проблема движков ВАЗ с цепным приводом – появление «дизельного» шума, и часто он возникает из-за вышедшего из строя натяжителя. Модернизация ДВС ВАЗ заключается в установке автоматического натяжителя вместо штатного заводского.

Нередко на модели двигателей ВАЗ-2101-07 и 21213-21214 устанавливают однорядную цепь: мотор с ней работает тише, к тому же цепочка меньше изнашивается – ее ресурс составляет в среднем 150 тыс. км.

Итак, что же это такое и для чего нужно. Расписывать основы работы 2Т двигателей не буду, так как их все знают, но не все понимают, что такое фазы газораспределения и почему они именно такие, а не другие.
Фазы газораспределения - это промежуток времени, за который открываются и закрываются окна в цилиндре при движении поршня вверх-вниз. Считаются они в градусах поворота колен вала двигателя. К примеру, фаза выпуска в 180 градусов означает, что выпускное окно начнет открываться, будет открыто, а затем закроется при половине оборота (180 из 360) колен вала двигателя. Также надо сказать, что окна открываются при движении поршня вниз. И открываются на максимум в нижней мертвой точке (НМТ). Затем при движении поршня вверх закрываются. Из-за такой особенности конструкции 2Т двигателей фазы газораспределения получаются симметричными относительно мертвых точек.

Для полноты картины процесса газораспределения надо также сказать и о площади окон. Фаза, как я уже писал это время, в течение которого открываются и закрываются окна, но не менее важную роль играет и площадь окна. Ведь при одном и том же времени открытия окна, смеси (продувка) пройдет больше через то окно, которое больше по площади и наоборот. Тоже самое и для выпуска, отработавших газов больше уйдет из цилиндра, если площадь окна больше.
Общий термин, характеризующий весь процесс протекания газов через окна, называется время-сечение.
И чем он больше, тем выше мощность двигателя и наоборот. Именно поэтому мы видим такие огромные по сечению каналы продувки, впуска и выпуска, а также высокие фазы газораспределения на современных высокофорсированных 2Т двигателях.

Итак, мы видим, что функции газораспределения выполняют окна цилиндра и поршень, который их открывает и закрывает. Однако из-за этого теряется время, в течение которого поршень совершал бы полезную работу. По сути, мощность двигателя формируется только до открытия выпускного окна и при дальнейшем движении поршня вниз создание крутящего момента не происходит либо очень незначительно. В общем, объем двигателя 2Т в отличие от 4Т используется не полностью. Поэтому первостепенной задачей конструкторов является увеличение времени - сечения при минимальных фазах. Это дает лучшие показатели кривых момента и экономичности, чем притом же времени – сечении, но более высоких фазах.
Но поскольку диаметр цилиндра ограничен, а также ограничены и ширина окон, то для достижения высокого уровня форсирования двигателя приходится повышать фазы газораспределения.
Многие люди, желая достичь большей мощности начинают увеличивать окна в цилиндре либо наугад, либо по чьему то совету или где то вычитав совет, но не очень то понимают, что получат в итоге, и правильно ли делают. А может им совсем другое надо?
Допустим у нас имеется какой либо двигатель и мы хотим получить от него большей отдачи. Что нам делать с фазами? Первое что многим приходит на ум – пропилить выпускные окна вверх, либо поднять цилиндр за счет прокладки, а также пропилить впуск вниз или подрезать поршень со стороны впуска. Да, таким образом мы добьемся увеличения фаз и как следствие времени - сечение, но какой ценой. Мы уменьшили время, в течение которого поршень будет делать полезную работу. Почему же вообще увеличивается мощность при увеличении фаз, а не уменьшается? Увеличивается время – сечение скажите вы, да это так. Но не забываем что это 2Т двигатель и в нем весь принцип работы построен на резонансных волнах давления и разряжения. И по большей части ключевую роль здесь играет выпускная система. Именно она создает разряжение в цилиндре при начале выпуска, вытягивая отработавшие газы, а также вслед вытягивает и смесь из продувочных каналов, увеличивая время-сечение продувки. А также дозаправляет обратно вылетевшую смесь из цилиндра назад в цилиндр. В результате мы имеем увеличение мощности при увеличении фаз. Но нельзя забывать также что выпускная система настроена на определенные обороты, за пределами которых смесь, вылетевшая из цилиндра не возвращается обратно, а полезный ход поршня уменьшен из-за высоких фаз. Вот и выходит провал мощности и перерасход топлива на нерезонансных частотах двигателя.
Так можно ли получить ту же мощность и уменьшить провал и расход топлива? Да, если добиться того же время - сечения без увеличения фаз газораспределения!
Но что это означает на практике? Увеличение ширины окон и сечение каналов ограничено толщиной стенок каналов и предельными величинами ширины окон из-за работы колец. Но пока есть резерв, его надо использовать, а только затем повышать фазы.
Итак, если вы сами толком не знаете, чего хотите и как многие говорят - хочу мощности, но и чтобы низы не пропали, тогда увеличиваете пропускную способность каналов и окон без увеличения фаз. Если вам этого окажется мало, повышаете фазы постепенно. К примеру, оптимально будет на 10 градусов выпуск, на 5 градусов продувку.
Хотелось бы немного отступить и отдельно сказать о фазе впуска. Тут нам очень повезло, когда люди придумали обратный пластинчатый клапан, в простонароде лепестковый клапан (ЛК). Плюс его в том, что он автоматически изменяет фазу впуска и площадь впуска. Таким образом, он изменяет время-сечение впуска по потребностям двигателя в данный конкретный момент. Главное изначально правильно его подобрать и установить. Площадь клапана должна быть больше площади сечения карбюратора в 1,3 раза, чтобы не создать лишнего сопротивления потоку смеси.

Сами впускные окна должны быть еще больше, а фаза впуска должна быть максимально большой, чтобы ЛК начинал работать как можно раньше. В идеале с самого начала движения поршня вверх.
Примером того, как можно добиться максимальной фазы впуска, могут служить следующие фото доработок впуска(не Ява, но суть от этого не меняется):

Это один из лучших вариантов доработки впуска. По сути, впуск здесь представляет комбинированный вариант впуска в цилиндр и впуска в картер(впускной канал постоянно соединён с кривошипно-шатунной камерой, КШК). Это также увеличивает ресурс НГШ за счет лучшего обдува свежей смесью.

Для формирования этого канала, соединяющего впускной канал с КШКв картере выбирается максимально возможное количество металла, который расположен со стороны впуска возле гильзы.

В самой гильзе делаются дополнительные окна ниже основных.

В рубашке цилиндра также выбирается металл возле гильзы.
Правильно установленный ЛК позволяет один раз и навсегда решить проблему с подбором фазы впуска.
Кто же все-таки решился добиться большей мощности и знает на что нацелен, готов пожертвовать низами ради взрывного подхвата на верхах, тот может смело увеличивать фазы газораспределения. Лучшим решением будет использование чужого опыта в этом деле.
К примеру, в зарубежной литературе даются такие рекомендации:

Вариант Road race я бы исключил, так фазы очень экстремальные, рассчитанные на шоссейно-кольцевые гонки и при езде на обычных дорогах не практичны. Да и скорей всего рассчитаны под мощностной клапан, уменьшающий фазу выпуска на низких и средних оборотах до приемливого уровня. В любом случае делать фазу выпуска больше 190 градусов не стоит. Оптимальный же вариант как по мне 175-185градусов.

По поводу продувки… тут все более - менее указано оптимально. Однако как понять сколько будет крутить ваш двигатель? Можно поискать уже доработки людей и выяснить у них, а можно просто взять усредненные числа. Это в районе 120-130 градусов. Оптимально 125 градуса. Более высокие числа относятся к меньшим кубатурам двигателей.
И ещё, с повышением фаз продувки также надо поднять и её давление, т.е. картерное сжатие. Для этого нужно максимально уменьшать объём кривошипно-шатунной камеры убирая лишние пустоты. Например, для начала заглушив балансировочные отверстия в коленчатом валу. Заглушки нужно делать из максимально лёгкого материала, чтобы те не повлияли на балансировку КВ. Обычно их вырезают из винных пробок(пробковое дерево) и загоняют в балансировочные отверстия, после чего с обоих сторон промазывают эпоксидкой.

По поводу впуска я писал выше, что лучше поставить ЛК и не ломать себе голову с подбором фазы.

Итак, допустим, вы определились, как будете дорабатывать свой двигатель, какие фазы газораспределения у него будут. Теперь, как же проще всего посчитать, сколько это в мм.? Очень просто. Есть математические формулы определения хода поршня, которые можно приспособить к нашим целям, что я и сделал. Один раз занес формулы в программу Exсel и получил программу по высчитыванию фаз газораспределения продувки и выпуска (ссылка для скачивания программы в конце статьи ).
Нужно только знать длину шатуна (Ява 140мм, ИЖ юпитер, восход, минск 125мм, ИЖ пс 150мм. При желании в интернете можно найти длину практически любого шатуна) и ход поршня.
Программа сделана таким образом что определяет расстояние от верхней кромки окна до края гильзы. Почему так, а не скажем просто высоту окна? Потому что это наиболее точное определение фаз. В верхней мертвой точке днище поршня ОБЯЗАНО находиться на одном уровне с краем гильзы из-за сквиша (особенности формы камеры сгорания для бездетонационной работы), и если оно вдруг не на одном уровне, то прийдеться подогнать цилиндр по высоте(например, подбором толщины прокладки под цилиндром). А вот в нижней мертвой точке днище поршня как правило находится не на одном уровне с кромками окон, а чуть выше, т.е. поршень не полностью открывает окна! Такие конструктивные особенности, ничего не поделаешь. Но это означает, что окна работают не на всю свою высоту, а поэтому фазы по ним определятся, не могут!

Моторы работают на бензине, газе, спирте или дизельном топливе — по 2- или 4-тактному циклу. И в любом случае их характер сильно зависит от того, что называют фазами газораспределения. Так с чем же их едят? Зачем нужно регулировать фазы? Давайте посмотрим.

Газообмен

От того, как мы дышим, зависит многое в нашей жизни. Да и сама жизнь; в мире д.в.с. примерно так же. Возьмем 1,5-литровый ВАЗовский 16-клапанник; хотите, чтобы он тянул на V при 600 мин -1 ? Для прикола. Вопрос выбора фаз газораспределения: подберем профиль кулачков впускного распредвала так, чтобы впуск начинался примерно на 24° (по углу поворота коленчатого вала) после в.м.т. Кулачки сделаем настолько «тупыми», что клапаны поднимаются только на 3 мм, а заканчивается впуск где-то на 6° после н.м.т.

Начало выпуска регулируем на 12° до н.м.т., а закрываются выпускные клапаны пусть как раз в в.м.т.; их подъем оставляем «по штату». Градусы и миллиметры подъема клапанов и есть те самые фазы: раньше, позже.

Круговая диаграмма фаз газораспределения 4-тактного двигателя

Проверьте экспериментально: при правильной настройке зажигания и впрыска горючего модифицированная «четверка» покажет наибольший в 75-80 Нм — где-то на 6 сотнях оборотов! Максимальная мощность — 10-12 л.с. при 1500 мин -1 ; не обессудьте. Однако мотор и в самом деле потянет от самых «низов» — как (маленькая) паровая машина. Жаль только, ни оборотов, ни мощности он не развивает.

Полная диаграмма впуска (выпуска): миллиметры подъема клапана по углу поворота коленчатого вала

Не нравится… Зайдем с другого конца: профиль кулачков такой, что впуск начинается на 90° до в.м.т., а заканчивается на 108° после н.м.т; подъем — до 14 мм. Есть разница? И выпуск тоже: начало на 102° до н.м.т., завершение — на 96° после в.м.т. Как говорят спецы, перекрытие выпуска и впуска — 186° по углу поворота коленвала! И что? Смотрите: с правильной настройкой зажигания и впрыска [А также с тарелками клапанов увеличенного диаметра, расточенными и отполированными впускными и выпускными каналами…] ваш 1,5-литровый ВАЗ выдаст что-то вроде 185 Нм крутящего момента — под… 11 тыс. оборотов! А при 13500 мин -1 разовьет около 330 л.с. — безо всякого наддува. Конечно, если выдержат ГРМ и кривошипно-шатунный механизм (вряд ли). Лет 40 назад такую мощность показывал хороший 3-литровый двигатель Формулы 1… Правда, ниже 6000 мин -1 форсированный ВАЗ окажется совсем дохлым [Обороты «холостого» хода придется выставлять где-то на 3500 мин -1 …] ; его рабочий диапазон — 9-14 тыс. оборотов.

На «верхах» наоборот: широкие фазы газораспределения позволят на все 100% мобилизовать резонанс газовых потоков на впуске и выпуске, — как говорят, акустический наддув. При правильном подборе длин и сечений (индивидуальных) впускных и выпускных патрубков, коэффициент наполнения цилиндров достигнет в зоне 11 тыс. оборотов уровня 1,25-1,35; получите искомые 185 Нм.

Вот что такое фазы газораспределения: они задают газообмен д.в.с. — впуск-выпуск. А газообмен определяет все остальное: протекание крутящего момента, оборотность двигателя, его максимальную мощность, эластичность… На паре примеров видно, как сильно меняется характер одного и того же мотора в зависимости от фаз. Тут же возникает мысль: фазы газораспределения нужно регулировать — прямо на ходу. И тогда под капотом вашего авто окажется не один-единственный движок — на все случаи жизни, а множество неодинаковых!

Как учил лучший друг автомобилистов, «кадры решают все». Перефразируя знаменитое выражение, примем, что все решают фазы (газораспределения). Генералиссимус умел регулировать кадровые вопросы, а моторостроители всегда стремились управлять фазами.

Фазовращение

Легко сказать, но трудно сделать; у 4-тактного двигателя фазы газораспределения заданы профилем кулачков (из высокопрочной закаленной стали). Изменять его по ходу — задача не из простых. Однако кое-что удается сделать даже и с неизменным профилем, — скажем, сдвигать распредвал по углу поворота коленчатого вала. Вперед-назад; то есть, продолжительность впуска остается неизменной (во 2-м примере — 378°), однако он и начинается, и заканчивается раньше. Допустим, впускные клапаны открываются теперь на 120° до в.м.т. и закрываются на 78° после н.м.т. Так сказать, на «раньше-раньше». Или наоборот — на «позже-позже»: впуск начинается на 78° до в.м.т. и заканчивается на 120° после н.м.т.

Двигаем неизменную диаграмму впуска на «позже-позже»: фазовращение

Такое решение (для впуска) впервые применили у ALFA Romeo на 2-литровой 8-клапанной «четверке» Twin spark [Понятно, что фазовращение применимо, когда впускные и выпускные клапаны приводятся 2-я отдельными распредвалами; в середине 80-х Twin spark представлял собой одну из редких конструкций DOHC. А с тех пор 2 вала в головке цилиндров получили широкое распространение — именно ради фазовращения.] — еще в 1985 году. Его называют фазовращением и применяют (на впуске и/или на выпуске) довольно широко. И что оно дает? Немного, но все же лучше, чем ничего. Так, при холодном пуске двигателя с каталитическим нейтрализатором выпускной распредвал поворачивают на опережение. Выпуск начинается рано, и на нейтрализатор идут отработанные газы повышенной температуры; он быстрее прогревается до рабочего состояния. В атмосферу выбрасывается меньше вредных веществ.

Или едете вы равномерно со скоростью 90 км/ч, от мотора требуются лишь 10% его максимальной мощности. Значит, дроссельная заслонка сильно прикрыта; повышенные насосные потери, перерасход горючего. А если сильно сдвинуть впускной распредвал на «позже-позже», то часть (допустим, 1/3) топливововоздушной смеси выбрасывается на ходе сжатия обратно во впускной коллектор [Не беспокойтесь, она никуда не денется. Так называемый «5-тактный» цикл.] . и мощность двигателя понижаются (до нужного по условиям движения уровня) без излишнего дросселирования на впуске. То есть, дроссельная заслонка хотя и прикрыта, но не так сильно, насосные потери значительно меньше. Экономия бензина — и кое-что еще; разве не стоит того?

VTEC

Возможности фазовращения ограничены тем, что как говорится, «хвост вытащил — нос увяз». Когда вы уменьшаете опережение открытия клапанов, ровно на столько же увеличивается запаздывание закрытия.

Час от часу не легче. Вот если каким-то образом изменять продолжительность впуска-выпуска… Допустим, во 2-м примере сокращать ее, — когда надо, — с 378 до 225°. Двигатель сможет нормально работать также и «на низах» — без потери мощности «на верхах».

Осуществляются мечты: прошло 4 года после появления Twin spark с фазовращением, и Honda Motor показала 1,6-литровый 16-клапанник В16A с революционным VTEC. Двигатель оснащался — впервые в истории — 2-режимным клапанным механизмом (на впуске и выпуске); процесс пошел. Однако иной раз приходится слышать: подумаешь, VTEC — всего 2 режима. А у мотора моей «короллы» фазы регулируются бесступенчато — континуум режимов. Ну да, — если не видеть две большие разницы…

Классический хондовский механизм VTEC: 3 кулачка на пару клапанов. Центральный кулачок «широкий», 2 боковых (для симметрии) – «узкие». Блокировка коромысел поршеньком дает широкие фазы впуска (выпуска)

В нашей солнечной стране принято зачем-то дважды в год истязать людей переводом стрелок на час — на «раньше-раньше» весной и на «позже-позже» осенью. Бог им судья, речь о другом. Переводить стрелки технически несложно не только на час каждые полгода, но и хоть каждый день по минуте. Так сказать, бесступенчато. Фазовращение подобно переводу часов — и эффект примерно такой же.

А изменять продолжительность светового дня не пробовали? Пусть не бесступенчато, только два режима, — скажем, 9 часов и 12? Так вот, хондовские инженеры нашли решение задачи такого класса; почувствуйте разницу. Допустим, в «нижнем» режиме продолжительность впуска — 186° (по углу поворота коленвала), а в «верхнем» — 252°. Радикальное изменение условий газообмена: под капотом как бы два неодинаковых мотора. Один эластичный и тяговитый на «низах», другой — «острый», крутильный и мощный на «верхах»; 25 лет назад о таком и не мечтали. И кстати, ничего не стоит присоединить к VTEC еще и фазовращение, что у Honda и сделали в конструкции i-VTEC. Тогда как наоборот — придать VTEC к фазовращению — не выйдет; фирменный механизм не так прост и обложен патентами.

Две неодинаковые диаграммы впуска у одного и того же мотора

Обратите внимание: VTEC позволяет варьировать диаграмму впуска (и выпуска)! Не просто двигать ее на «раньше-раньше» или «позже-позже», а изменять профиль. Качественное продвижение против банального фазовращения — хотя режимов только 2 (в позднейших вариантах — аж 3). У Honda немало подражателей и последователей: Mitsubishi MIVEC, Porsche VarioCam Plus, Toyota VVTL-i. Во всех случаях применяются кулачки неодинаковых профилей с блокировкой привода клапанов; представьте, работает.

Valvetronic

Ну а в 2002-м баварские конструкторы обнародовали знаменитый ГРМ Valvetronic. И если VTEC — «монтана», то Valvetronic — «полный …». Механизм в массовой эксплуатации уже 5 лет, но автообозреватели до сих пор так и не постигли его смысл и принцип работы. Да что журналисты, если и пресс-служба BMW… Посмотрите и убедитесь: в фирменных пресс-релизах Valvetronic трактуют как механизм изменения подъема клапанов! А если призадуматься? Нет ничего проще, чем регулировать подъем — не сложнее фазовращения. Однако же Valvetronic — изощренное устройство; наверное, там есть кое-что сверх того.

Бесступенчатое варьирование диаграммы впуска (изменяется ширина основания): баварский Valvetronic. Обратите внимание: схема механизма показана неправильно – он не сможет работать. Фирменная пресс-служба… max = 9,5 mm; min = 0,2 mm

О необычном механизме поговорим отдельно. А пока признаем, что баварские моторы Valvetronic стали первыми двигателями Отто, мощность которых регулируется без дросселирования на впуске! Как у дизелей. Они обходятся без самой зловредной детали в конструкции двигателя с искровым зажиганием; сравнимо с изобретением карбюратора. Или магнето. В 2002 году мир изменился, хотя никто и не заметил…

Электромагниты

Снимаю шляпу перед инженерами BMW, и тем не менее Valvetronic — лишь эпизод в развитии двигателя Отто. Промежуточное решение — в ожидании радикального. А оно уже на пороге: бескулачковый ГРМ с электромагнитным приводом клапанов. Никаких распредвалов с их приводом, толкателей, коромысел, гидрокомпенсаторов зазоров и пр. Просто стержень клапана входит в мощный электромагнит [С усилием по оси клапана до 80-100 кг! Иначе клапаны не успевают за своими фазами. А обеспечить такие усилия в компактном механизме непросто, в чем и состоит главная трудность создания э-магнитного ГРМ.] , напряжение на который подается под контролем ЦПУ. Вот и все: на каждом обороте коленвала ЦПУ управляет моментами начала открытия и закрытия клапанов — и высотой их подъема. Отсутствуют кулачки с их неизменным профилем, нет раз и навсегда заданных фаз газораспределения.

Электромагнитный клапанный механизм (Valeo): безграничные возможности 1 – шайбы; 2 – электромагнит; 3 – пластина; 4 – клапан; 5 – пружины; 6 – сжатие; 7 – растяжение

Диаграммы впуска и выпуска регулируются свободно и в широких пределах (ограниченных только физикой процессов). Раздельно для каждого из цилиндров и от цикла к циклу — как момент впрыска и количество подаваемого горючего. Или зажигания. По существу двигатель Отто станет самим собой — впервые в истории. И не оставит никаких шансов дизелю. Как компьютеры нашли себя с появлением микро-«чипов», и карманные калькуляторы мгновенно вытеснили электромеханические счетные машины. Тогда как в конце 40-х ЭВМ строили на вакуумных лампах и электромагнитных реле; считайте, что двигатели с искровым зажиганием все еще находятся на той самой стадии. Ну разве что Valvetronic…

Качество работы двигателя внутреннего сгорания автомобиля зависит от многих факторов, таких как мощность, коэффициент полезного действия, объем цилиндров.

Большое значение в моторе имеют фазы газораспределения, и от того, как происходит перекрытие клапанов, зависит экономичность ДВС, его приемистость, стабильность работы на холостых оборотах.
В стандартных простых двигателях изменение фаз ГРМ не предусматривается, и такие моторы не отличаются высокой эффективностью. Но в последнее время все чаще на автомашинах передовых компаний, таких как Хонда, Мерседес, Тойота, Ауди все чаще стали применяться силовые агрегаты с возможностью изменения смещения распределительных валов по мере изменения количества оборотов в ДВС.

Диаграмма фаз газораспределения двухтактного двигателя

Двухтактный двигатель отличается от четырехтактного тем, что рабочий цикл у него проходит за один оборот коленвала, в то же время на 4-тактных ДВС он происходит за два оборота. Фазы газораспределения в ДВС определяются продолжительностью открытия клапанов – выпускных и впускных, угол перекрытия клапанов обозначается в градусах положения к/в.

В 4-тактных моторах цикл наполнения рабочей смеси происходит за 10-20 градусов до того, как поршень придет в верхнюю мертвую точку, и заканчивается через 45-65º, а в некоторых ДВС и позднее (до ста градусов), после того как поршень пройдет нижнюю точку. Общая продолжительность впуска в 4-тактных моторах может длиться 240-300 градусов, что обеспечивает хорошую наполняемость цилиндров рабочей смесью.

В 2-тактных движках продолжительность впуска топливовоздушной смеси длится на повороте коленвала приблизительно 120-150º, также меньше длится и продувка, поэтому наполнение рабочей смесью и очистка выхлопных газов у двухтактных ДВС всегда хуже, чем у 4-тактных силовых агрегатов. На рисунке ниже показана диаграмма фаз газораспределения двухтактного мотоциклетного двигателя движка К-175.

Двухтактные движки применяются на автомобилях нечасто, так как они обладают более низким КПД, худшей экономичностью и плохой очисткой выхлопных газов от вредных примесей. Особенно актуален последний фактор – в связи с ужесточением норм экологии важно, чтобы в выхлопе двигателя содержалось минимальное количество CO.

Но все же у 2-хтактных ДВС есть и свои преимущества, особенно у дизельных моделей:

  • силовые агрегаты компактнее и легче;
  • они дешевле стоят;
  • двухтактный мотор быстрее разгоняется.

На многих автомобилях в 70-х и 80-х годах прошлого столетия в основном устанавливались карбюраторные двигатели с «траблерной» системой зажигания, но многие передовые компании по производству автомашин уже тогда начали оснащать моторы электронной системой управления двигателем, в которой всеми основными процессами управлял единый блок (ЭБУ). Сейчас практически все современные авто имеют ЭСУД – электронная система применяется не только в бензиновых, но и в дизельных ДВС.

В современной электронике присутствуют различные датчики, контролирующие работу двигателя, посылающие сигналы блоку о состоянии силового агрегата. На основании всех данных от датчиков ЭБУ принимает решение – сколько необходимо подавать топлива в цилиндры на тех или иных нагрузках (оборотах), какой установить угол опережения зажигания.

Датчик фаз газораспределения имеет еще одно название – датчик положения распредвала (ДПРВ), он определяет положение ГРМ относительно коленвала. От его показаний зависит, в какой пропорции будет подаваться топливо в цилиндры в зависимости от количества оборотов и угла опережения зажигания. Если ДПРВ не работает, значит, фазами ГРМ не контролируются, и ЭБУ не «знает», в какой последовательности необходимо подавать топливо в цилиндры. В результате возрастает расход топлива, так как бензин (солярка) одновременно подается во все цилиндры, двигатель работает вразнобой, на некоторых моделях авто ДВС вовсе не запускается.

Регулятор фаз газораспределения

В начале 90-х годов 20-го века стали выпускаться первые двигатели с автоматическим изменением фаз ГРМ, но здесь уже не датчик контролировал положение коленвала, а непосредственно сдвигались сами фазы. Принцип работы такой системы следующий:

  • распределительный вал соединяется с гидравлической муфтой;
  • также с этой муфтой имеет соединение и распредшестерня;
  • на холостых и малых оборотах распредшестерня с распредвалом зафиксированы в стандартном положении, как была установлены по меткам;
  • при увеличении оборотов под воздействием гидравлики муфта поворачивает распредвал относительно звездочки (распредшестерни), и фазы ГРМ смещаются – кулачки распредвала раньше открывают клапана.

Одна из первых подобных разработок (VANOS) была применена на моторах M50 компании BMW, первые двигатели с регулятором фаз газораспределения появились в 1992 году. Следует отметить, что сначала VANOS устанавливался только на впускном распредвалу (у моторов M50 двухвальная система ГРМ), a c 1996-го стала использоваться система Double VANOS, с помощью которой уже регулировалось положение выпускного и впускного р/валов.

Какое преимущество дает регулятор фаз ГРМ? На холостом ходу перекрытие фаз газораспределения практически не требуется, и оно в данном случае даже вредит двигателю, так как при сдвиге распредвалов выхлопные газы могут попасть во впускной коллектор, а часть топлива будет попадать в выхлопную систему, полностью не сгорая. Но когда движок работает на максимальной мощности, фазы должны быть максимально широкими, и чем выше обороты, тем больше необходимо перекрытие клапанов. Муфта изменения фаз ГРМ дает возможность эффективно наполнять цилиндры рабочей смесью, а значит, повысить КПД мотора, увеличить его мощность. В тоже время на холостом ходу р/валы с муфтой находятся в исходном состоянии, и сгорание смеси идет в полном объеме. Получается, что регулятор фаз повышает динамику и мощность ДВС, при этом достаточно экономично расходуется топливо.

Система изменения фаз газораспределения (СИФГ) обеспечивает более низкий расход топлива, снижает уровень CO в выхлопных газах, позволяет более эффективно использовать мощность ДВС. У разных мировых автопроизводителей разработана своя СИФГ, применяется не только изменение положения распредвалов, но и уровень поднятия клапанов в ГБЦ. Например, компания Nissan применяет систему CVTCS, которой управляет клапан регулировки фаз газораспределения (электромагнитный клапан). На холостых оборотах этот клапан открыт, и не создает давление, поэтому распредвалы находятся в исходном состоянии. Открывающийся клапан увеличивает давление в системе, и чем оно выше, тем на больший угол сдвигаются распредвалы.

Следует отметить, что СИФГ в основном используются на двигателях с двумя распределительными валами, где в цилиндрах устанавливается по 4 клапана – по 2 впускных и 2 выпускных.

Приспособления для установки фаз газораспределения

Чтобы двигатель работал без перебоев, важно правильно выставить фазы ГРМ, установить в нужном положении распределительные валы относительно коленвала. На всех движках валы выставляются по меткам, и от точности установки зависит очень многое. Если валы выставляются неправильно, возникают различные проблемы:

  • мотор неустойчиво работает на холостых оборотах;
  • ДВС не развивает мощности;
  • происходят выстрелы в глушитель и хлопки во впускном коллекторе.

Если в метках ошибиться на несколько зубьев, не исключено, что могут согнуться клапана, и движок при этом не запустится.

На некоторых моделях силовых агрегатов разработаны специальные приспособления для установки фаз газораспределения. В частности, для двигателей семейства ЗМЗ-406/ 406/ 409 есть специальный шаблон, с помощью которого измеряются углы положения распредвалов. Шаблоном можно проверить существующие углы, и если они выставлены неправильно, валы следует переустановить. Приспособление для 406-х моторов представляет собой набор, состоящий из трех элементов:

  • двух угломеров (для правого и левого вала, они разные);
  • транспортира.

Когда коленчатый вал выставлен в ВМТ 1-го цилиндра, кулачки распредвалов должны выступать над верхней плоскостью ГБЦ под углом 19-20º с погрешностью ± 2,4°, причем, кулачок впускного валика должен быть чуть выше кулачка выпускного распредвала.

Также есть специальные приспособления для установления распредвалов на моторах BMW моделей M56/ M54/ M52. В комплект установки фаз газораспределения ДВС БВМ входит:

Неисправности системы изменения фаз газораспределения

Изменять фазы газораспределения можно различными способами, и последнее время наиболее распространен поворот р/валов, хотя нередко применяется метод изменения величины подъема клапанов, использование распределительных валов с кулачками измененного профиля. Периодически в газораспределительном механизме возникают различные неисправности, из-за которых мотор начинает работать с перебоями, «тупит», в некоторых случаях и вовсе не запускается. Причины возникновения неполадок могут быть разными:

  • неисправен электромагнитный клапан;
  • засорилась грязью муфта изменения фаз;
  • вытянулась цепь газораспределительного механизма;
  • неисправен натяжитель цепи.

Часто при возникающих неисправностях в этой системе:

  • снижаются холостые обороты, в некоторых случаях ДВС глохнет;
  • значительно увеличивается расход топлива;
  • двигатель не развивает обороты, машина порой не разгоняется даже до 100 км/ч;
  • мотор плохо запускается, его приходится гонять стартером несколько раз;
  • слышен стрекот, идущий из муфты СИФГ.

По всем признакам основная причина проблем с двигателем – выход из строя клапана СИФГ, обычно при этом компьютерная диагностика выявляет ошибку этого устройства. Следует отметить, что лампа диагностики Check Engine загорается при этом не всегда, поэтому трудно понять, что сбои происходят именно в электронике.

Часто проблемы ГРМ возникают из-за засорения гидравлики – плохое масло с частицами абразива забивает каналы в муфте, и механизм заклинивает в одном из положений. Если муфту «клинит» в исходном положении, ДВС спокойно работает на ХХ, но совсем не развивает оборотов. В случае, когда механизм остается в положении максимального перекрытия клапанов, движок может плохо запускаться.

К сожалению, на двигатели российского производства СИФГ не устанавливается, но многие автомобилисты занимаются тюнингом ДВС, стараясь улучшить характеристики силового агрегата. Классический вариант модернизации мотора – это установка «спортивного» распредвала, у которого смещены кулачки, изменен их профиль.

У такого р/вала есть свои преимущества:

  • мотор становится приемистым, четко реагирует на нажатие педали газа;
  • улучшаются динамические характеристики автомобиля, машина буквально рвет из-под себя.

Но в таком тюнинге есть и свои минусы:

  • холостые обороты становится неустойчивыми, приходится их выставлять в пределах 1100-1200 об/мин;
  • увеличивается расход топлива;
  • достаточно сложно отрегулировать клапана, ДВС требует тщательной настройки.

Достаточно часто тюнингу подвергаются вазовские двигатели моделей 21213, 21214, 2106. Проблема движков ВАЗ с цепным приводом – появление «дизельного» шума, и часто он возникает из-за вышедшего из строя натяжителя. Модернизация ДВС ВАЗ заключается в установке автоматического натяжителя вместо штатного заводского.

Нередко на модели двигателей ВАЗ-2101-07 и 21213-21214 устанавливают однорядную цепь: мотор с ней работает тише, к тому же цепочка меньше изнашивается – ее ресурс составляет в среднем 150 тыс. км.

Тем, кто связан с гоночной автомобильной или мотоциклетной техникой или просто интересуется конструкцией спортивных машин, хорошо знакомо имя инженера Вильгельма Вильгельмовича Бекмана — автора книг «Гоночные автомобили» и «Гоночные мотоциклы». Не раз он выступал и на страницах «За рулем».

Недавно вышло в свет третье издание книги «Гоночные мотоциклы» (второе было выпущено в 1969 году), переработанное и дополненное сведениями о новых конструктивных решениях и анализом тенденции дальнейшего развития двухколесных машин. Читатель найдет в книге очерк об истории зарождения мотоциклетного спорта и влиянии его на развитие мотоциклетной промышленности, получит сведения о классификации машин и соревнований, познакомится с особенностями конструкции двигателей, трансмиссии, шасси и системы зажигания гоночных мотоциклов, узнает о путях их совершенствования.

Многое из того, что применяется впервые на спортивных машинах, затем внедряется на серийных дорожных мотоциклах. Поэтому знакомство с ними позволяет как бы заглянуть в будущее и представить себе мотоцикл завтрашнего дня.

Подавляющее количество строящихся ныне в мире мотоциклетных двигателей работает по двухтактному циклу, поэтому к ним мотолюбители проявляют наибольший интерес. Предлагаем вниманию читателей отрывок из книги В. В. Бекмана, посвященный одному из важнейших вопросов развития двухтактных двигателей. Мы сделали только незначительные сокращения, изменили нумерацию рисунков и привели некоторые наименования в соответствие с употребляемыми в журнале.

В настоящее время двухтактные гоночные двигатели превосходят по мощности своих четырехтактных соперников в классах от 50 до 250 см3: в классах большего рабочего объема четырехтактные двигатели пока сохраняют конкурентоспособность. так как высокая форсировка двухтактных двигателей этих классов труднее, причем более заметным становится известный недостаток двухтактного процесса — повышенный расход топлива, требующий увеличения объема топливных баков и более частых остановок для заправки.

Прототипом большинства современных двухтактных двигателей гоночного типа является конструкция, разработанная фирмой МЦ (ГДР). Работы по усовершенствованию двухтактных двигателей, выполненные этой фирмой, обеспечили гоночным мотоциклам МЦ классов 125 и 250 см3 высокие динамические качества, и их конструкция в той или иной степени была скопирована многими фирмами в других странах мира.

Гоночные двигатели МЦ (рис. 1) имеют простую конструкцию и похожи как по устройству, так и по внешнему виду на обычные двухтактные двигатели.

А — общий вид; б — расположение газораспределительных каналов

За 13 лет мощность гоночного двигателя МЦ 125 см3 выросла с 8 до 30 л. с.; уже в 1962 году была достигнута литровая мощность 200 л. с./л. Одним из существенных элементов двигателя является дисковый вращающийся золотник, предложенный Д. Циммерманом. Он позволяет получить несимметричные фазы впуска и выгодную форму впускного тракта: благодаря этому возрастает коэффициент наполнения картера. Дисковый золотник изготовляют из тонкой (около 0,5 мм) листовой пружинной стали. Оптимальная толщина диска найдена опытным путем. Дисковый золотник работает как мебранный клапан, прижимаясь к отверстию впускного канала, когда в картере происходит сжатие горючей смеси. При увеличенной или уменьшенной толщине золотника наблюдается ускоренный износ диска. Слишком тонкий диск прогибается в сторону впускного канала, что влечет за собой увеличение силы трения между диском и крышкой картера; увеличенная толщина диска также ведет к увеличенным потерям на трение. В результате доводки конструкции срок службы дискового золотника был увеличен с 3 до 2000 часов.

Дисковый золотник не вносит особого усложнения в устройство двигателя. Золотник устанавливается на валу посредством скользящего шпоночного или шлицевого соединения, чтобы диск мог занимать свободное положение и не защемляться в узком пространстве между стенкой картера и крышкой.

По сравнению с классической системой управления впускным окном нижней кромкой поршня золотник дает возможность раньше открыть впускное окно и долго держать его открытым, что способствует повышению мощности как на высоких, так и на средних частотах вращения. При обычном устройстве газораспределения раннее открытие впускного окна неизбежно связано с большим запаздыванием его закрытия: это полезно для получения максимальной мощности, но связано с обратным выбросом горючей смеси на средних режимах и соответствующим ухудшением характеристики крутящего момента и пусковых качеств двигателя.

На двухцилиндровых двигателях с параллельными цилиндрами дисковые золотники устанавливают по концам коленчатого вала, что при выступающих справа и слева карбюраторах дает большие габариты по ширине двигателя, увеличивает лобовую площадь мотоцикла и ухудшает его внешнюю форму. Для устранения этого недостатка иногда применяли конструкцию в виде двух спаренных под углом одноцилиндровых двигателей с общим картером и воздушным охлаждением («Дерби», Ява).

В отличие от двигателя Ява цилиндры спаренных двигателей могут занимать вертикальное положение: при этом требуется водяное охлаждение, так как задний цилиндр заслонен передним. По такой схеме был изготовлен один из гоночных двигателей МЦ 125 см3.

Трехцилиндровый двигатель Suzuki (50 см3, литровая мощность около 400 л. с./л) с дисковыми золотниками по существу состоял из объединенных в одном блоке трех одноцилиндровых двигателей с самостоятельными коленчатыми валами: два цилиндра были горизонтальными. один вертикальным.

Двигатели с золотнинами на впуске конструировались и в четырехцилиндровых вариантах. Типичным примером могут служить двигатели Yamaha, изготовленные в виде двух спаренных шестеренной передачей двухцилиндровых двигателей с параллельными цилиндрами; одна пара цилиндров расположена горизонтально, вторая — под углом вверх. Двигатель 250 см3 развивал до 75 л. с., а мощность варианта 125 см3 достигала 44 л. с. при 17 800 об/мин.

По аналогичной схеме сконструирован и четырехцилиндровый двигатель Ява (350 см3, 48x47) с золотниками на впуске, представляющий собой два спаренных двухцилиндровых двигателя с водяным охлаждением. Он развивает мощность 72 л. с. при 1300 об /мин. Еще больше мощность четырехцилиндрового двигателя «Морбиделли» класса 350 см3 такого же типа — 85 л. с.

Ввиду того, что дисковые золотники устанавливаются по концам коленчатого вала, отбор мощности в многоцилиндровых конструкциях с такой системой впуска обычно производится через шестерню на средней шейке вала между отсеками картера. При дисковых золотниках рассматриваемого типа увеличение числа цилиндров двигателя свыше четырех нецелесообразно, так как дальнейшее спаривание двухцилиндровых двигателей привело бы к очень громоздкой конструкции; даже в четырехцилиндровом исполнении двигатель получается на пределе допустимых габаритов.

В последнее время на некоторых гоночных двигателях «Ямаха» применяют автоматические мембранные клапаны во впускном канале между карбюратором и цилиндром (рис. 2, а). Клапан представляет собой тонкую эластичную пластинку, отгибающуюся под действием разрежения в картере и освобождающую проход для горючей смеси. Во избежание поломки клапанов предусмотрены ограничители их хода. При средних режимах работы клапаны достаточно быстро закрываются, чтобы предупредить обратный выброс горючей смеси, что улучшает характеристику крутящего момента двигателя. Такие клапаны на основании практических наблюдений могут нормально функционировать при скоростных режимах до 10 000 об/мин. При более высоких числах оборотов их работоспособность проблематична.

: а — схема устройства; б —начало наполнения картера; в — подсос смеси через клапаны в цилиндр; 1 — ограничитель; 2 — мембрана; 3 — окно в поршне

В двигателях с мембранными клапанами для улучшения наполнения целесообразно поддерживать сообщение между впускным каналом и подпоршневым пространством или продувочным каналом при положении поршня вблизи Н.М.Т. Для этого в стенке поршня со стороны впуска предусматривают соответствующие окна 3 (рис. 2, б). Мембранные клапаны обеспечивают дополнительный подсос горючей смеси, когда во время продувки в цилиндрах и картере образуется разрежение (рис. 2, в).

Высокую мощность развивают также двухтактные двигатели, у которых процессом впуска горючей смеси в картер управляет поршень, как у подавляющего большинства обычных двигателей массового производства. В основном это относится к двигателям рабочим объемом 250 см3 и более. Примерами могут служить мотоциклы «Ямаха» и «Харлей-Давидсон» (250 см3 — 60 л. с.;

350 см3 — 70 л. с.), а также мотоцикл «Сузуки» с двухцилиндровым двигателем класса 500 см3 мощностью 75 л. с., занявший первое место в гонке Т.Т. (Турист Трофи) 1973 года. Форсирование этих двигателей осуществляется так же, как и в случае использования дисковых золотников, тщательной конструктивной проработкой органов газораспределения и на основе изучения взаимного влияния впускного и выпускного трактов.

Двухтактные двигатели независимо от системы управления впуском имеют выпрямленную форму впускного тракта, который направлен в подпоршневое пространство, куда поступает горючая смесь; по отношению к оси цилиндра впускной тракт может быть перпендикулярным или с наклоном снизу вверх или сверху вниз. Такая форма впускного тракта благоприятна для использования эффекта резонансного наддува. Поток горючей смеси во впускном тракте непрерывно пульсирует, причем в нем возникают волны разрежения и повышенного давления. Настройка впускного тракта за счет подбора его размеров (длины и проходных сечений) позволяет обеспечить в определенном интервале чисел оборотов закрытие впускного окна в момент входа в картер волны повышенного давления, что увеличивает коэффициент наполнения и повышает мощность двигателя.

При значениях коэффициента наполнения картера, превышающих единицу, двухтактный двигатель должен был бы развивать вдвое большую мощность по сравнению с четырехтактным. В действительности этого не происходит вследствие существенных потерь свежей смеси в выхлоп н перемешивания поступившего в цилиндр заряда с остаточными газами от предыдущего рабочего цикла. Несовершенство рабочего цикла двухтактного двигателя обусловлено одновременным протеканием процессов наполнения цилиндра и его очистки от продуктов сгорания, тогда как в четырехтактном двигателе эти процессы разделены во времени.

Процессы газообмена в двухтактном двигателе отличаются большой сложностью и до сих пор плохо поддаются расчету. Поэтому форсирование двигателей ведется, главным образом, путем экспериментального подбора соотношений и размеров конструктивных элементов органов газораспределения от впускного патрубка карбюратора до концевого патрубка выхлопной трубы. Со временем был накоплен большой опыт по форсированию двухтактных двигателей, описанный в различных исследованиях.

В первых конструкциях гоночных двигателей МЦ была использована возратно-петлевая продувка типа «Шнюрле» с двумя продувочными каналами. Значительное улучшение мощностных показателей было получено благодаря добавлению третьего продувочного канала (см рис. 1), расположенного спереди напротив выпускных окон. Для перепуска через этот канал на поршне предусмотрено специальное окно. Дополнительный продувочный канал устранил образование подушки горячих газов под дном поршня. Благодаря этому каналу удалось увеличить наполнение цилиндра, улучшить охлаждение и смазку свежей смесью игольчатого подшипника верхней головки шатуна, а также облегчить температурный режим работы дна поршня. В результате мощность двигателя повысилась на 10 процентов, а прогары поршней и поломки подшипника верхней головки шатуна были устранены.

Качество продувки зависит от степени сжатия горючей смеси в картере; на гоночных двигателях этот параметр выдерживается в пределах 1,45 — 1,65, что требует весьма компактной конструкции кривошипно-шатунного механизма.

Получение высоких литровых мощностей возможно за счет широких фаз распределения и большой ширины газораспределительных окон.

Ширина окон гоночных двигателей, измеренная центральным углом в поперечном сечении цилиндра, достигает 80 — 90 градусов, что создает тяжелые условия работы для поршневых колец. Зато при такой ширине окон в современных двигателях обходятся без склонных к перегреву перемычек. Увеличение высоты продувочных окон сдвигает максимальный крутящий момент в область более низкого числа оборотов, а увеличение высоты выпускных окон создает обратный эффект.

Рис. 3. Системы продувки: а — с третьим продувочным окном, б — с двумя дополнительными продувочными каналами; в — с разветвляющимися продувочными каналами.

Система продувки с третьим дополнительным продувочным каналом (см. рис. 1) удобна для двигателей с золотником, у которых впускной канал расположен сбоку, а зона цилиндра напротив выпускного окна свободна для размещения в ней продувочного окна; последнее может иметь перемычку, как показано на рис. 3, а. Дополнительное продувочное окно способствует образованию потока горючей смеси, огибающего полость цилиндра (петлевая продувка). Весьма существенное значение для эффективности процесса газообмена имеют углы входа продувочных каналов; от них зависят форма и направление потока смеси в цилиндре. Горизонтальный угол а, колеблется в пределах 50 — 60 градусов, причем большее значение соответствует более высокому форсированию двигателя. Вертикальный угол a2, равен 45 — 50 градусов. отношение сечений дополнительного и основного продувочных окон составляет около 0,4.

На двигателях без золотника карбюраторы и впускные окна, как правило, расположены на задней стороне цилиндров. В этом случае обычно применяют иную систему продувки — с двумя боковыми дополнительными продувочными каналами (рис. 3,б). Горизонтальный угол входа а, (см. рис. 3,а) дополнительных каналов — около 90 градусов. Вертикальный угол входа продувочных наналов колеблется для различных моделей в довольно широких пределах: на модели «Ямаха» ТД2 класса 250 см3 он составляет для главных продувочных каналов 15 градусов, а для дополнительных — 0 градусов; на модели «Ямаха» ТД2 класса 350 см3 соответственно 0 и 45 градусов.

Иногда применяется вариант этой системы продувки с разветвляющимися продувочными каналами (рис. 3,в). Дополнительные продувочные окна расположены напротив выпускного окна, и, следовательно, подобное устройство приближается к первой из рассмотренных систем, имеющей три окна. Вертикальный угол входа дополнительных продувочных каналов 45 — 50 градусов. Отношение сечений дополнительных и основных продувочных окон также около 0,4.

Рис. 4. Схемы движения газов в цилиндре: а — с разветвляющимися ка налами; б — с параллельными.

На рис. 4 показаны схемы движения газов в цилиндре во время процесса продувки. При остром угле входа дополнительных продувочных каналов поступающий из них поток свежей смеси удаляет клубок отработавших газов в середине цилиндра, не захватываемый потоком смеси из основных продувочных каналов. Возможны и другие варианты систем продувки по количеству продувочных окон.

Следует заметить, что на многих двигателях продолжительность открытия дополнительных продувочных окон на 2 — 3 градуса меньше, чем у основных.

На некоторых двигателях «Ямаха» дополнительные продувочные каналы были выполнены в виде желобков на внутренней поверхности цилиндра; внутренней стенкой канала является здесь стенка поршня при его положениях вблизи от Н.М.Т.

На процессе продувки сказывается и профиль продувочных каналов. Плавная форма без резких изгибов дает меньшие перепады давления и улучшает показатели работы двигателя, в особенности на промежуточных режимах.

Приведенные в этом разделе сведения показывают, что двухтактные двигатели выделяются простотой своего устройства.

Повышение удельной мощности двигателей этого типа в течение последнего десятилетия не сопровождалось какими-либо существенными изменениями базовой конструкции; оно явилось следствием тщательного экспериментального подбора соотношений и размеров ранее известных конструктивных элементов.



© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков