Жесткость пружины. Что такое жесткость пружины и как ее рассчитать Что называется жесткостью пружины единицы измерения

Жесткость пружины. Что такое жесткость пружины и как ее рассчитать Что называется жесткостью пружины единицы измерения

Для определения устойчивости и сопротивления к внешним нагрузкам используется такой параметр, как жесткость пружины. Также он называется коэффициентом Гука или упругости. По сути, характеристика жесткости пружины определяет степень ее надежности и зависит от используемого материала при производстве.

Измерению коэффициента жесткости подлежат следующие типы пружин:

  • Сжатия;
  • Растяжения;
  • Изгиба;
  • Кручения.

Изготовление пружин любого типа вы .

Какую жесткость имеет пружина

При выборе готовых пружин, например для подвески автомобиля, определить, какую жесткость она имеет, можно по коду продукта либо по маркировке, которая наносится краской. В остальных случаях расчет жесткости производится исключительно экспериментальными методами.

Жесткость пружины по отношению к деформации бывает величиной переменной или постоянной. Изделия, жесткость которых при деформации остается неизменной называются линейными. А те, у которых есть зависимость коэффициента жесткости от изменения положения витков, получили название «прогрессивные».

В автомобилестроении в отношении подвески существует следующая классификация жесткости пружин:

  • Возрастающая (прогрессирующая). Характерна для более жесткого хода автомобиля.
  • Уменьшающаяся (регрессирующая) жесткость. Напротив, обеспечивает, «мягкость» подвески.

Определение величины жесткости зависит от следующих исходных данных:

  • Тип сырья, используемый при изготовлении;
  • Диаметр витков металлической проволоки (Dw);
  • Диаметр пружины (в расчет берется средняя величина) (Dm);
  • Число витков пружины (Na).

Как рассчитать жесткость пружины

Для расчета коэффициента жесткости применяется формула:

k = G * (Dw)^4 / 8 * Na * (Dm)^3,

где G – модуль сдвига. Данную величину можно не рассчитывать, так как она приведена в таблицах к различным материалам. Например, для обыкновенной стали она равна 80 ГПа, для пружинной – 78,5 ГПа. Из формулы понятно, что наибольшее влияние на коэффициент жесткости пружины оказывают оставшиеся три величины: диаметр и число витков, а также диаметр самой пружины. Для достижения необходимых показателей жесткости изменению подлежат именно эти характеристики.

Вычислить коэффициент жесткости экспериментальным путем можно при помощи простейших инструментов: самой пружины, линейки и груза, который будет воздействовать на опытный образец.

Определение коэффициента жесткости растяжения

Для определения коэффициента жесткости растяжения производятся следующие расчеты.

  • Измеряется длина пружины в вертикальном подвесе с одной свободной стороной изделия – L1;
  • Измеряется длина пружины с подвешенным грузом – L2.Если взять груз массой 100гр., то он будет воздействовать силой в 1Н (Ньютон) – величина F;
  • Вычисляется разница между последним и первым показателем длины – L;
  • Рассчитывается коэффициент упругости по формуле: k = F/L.

Определение коэффициента жесткости сжатия производится по этой же формуле. Только вместо подвешивания груз устанавливается на верхнюю часть вертикально установленной пружины.

Подводя итог, делаем вывод, что показатель жесткости пружины является одной из существенных характеристик изделия, которая указывает на качество исходного материала и определяет долговечность использования конечного изделия.

Лабораторная работа №1.

Исследование зависимости жёсткости тела от его размеров.

Цель работы: пользуясь зависимостью силы упругости от абсолютного удлинения, вычислить жёсткости пружин разной длины.

Оборудование: штатив, линейка, пружина, грузы массой по 100г.

Теория. Под деформацией понимают изменение объема или формы тела под действием внешних сил. При изменении расстояния между частицами вещества (атомами, молекулами, ионами) изменяются силы взаимодействия между ними. При увеличении расстояния растут силы притя жжения, а при уменьшении – силы отталкивания. которые стремятся вернуть тело в исходное состояния. Поэтому силы упругости имеют электромагнитную природу. Сила упругости всегда направлена к положению равновесия и стремится вернуть тело в исходное состояние. Сила упругости прямо пропорциональна абсолютному удлинению тела: .

Закон Гука: Сила упругости, возникающая при деформации тела, прямо пропорциональна его удлинению (сжатию) и направлена противоположно перемещению частиц тела при деформации, , х = Δ l -удлинение тела, k – коэффициент жесткости [ k ] = Н/м. Коэффициент жесткости зависит от формы и размеров тела, а также от материала. Он численно равен силе упругости при удлинении (сжатии) тела на 1 м.

График зависимости проекции силы упругости F x от удлинения тела.

Из гр афика видно, что tgα = к. Именно по этой формуле вы будете определять жёсткость тела в данной лабораторной работе.

Порядок выполнения работы.

1.Закрепить пружину в штативе на половину длины.

2.Измерить линейкой первоначальную длину пружины l 0 .

3.Подвесить груз массой 100г.

4.Измерить линейкой длину деформированной пружины l .

5.Вычислить удлинение пружины x 1 = Δ l = l – l 0 .

6. На покоящийся относительно пружины груз действуют две

компенсирующие друг друга силы: тяжести и упругости

7.Вычислить силу упругости по формуле , g = 9,8 м/ c 2 - ускорение свобдного падения
8. Подвесить груз массой 200г и повторить опыт по пунктам 4-6.

9.Результаты занести в таблицу.

Таблица.

№п/п

Начальная длина , м

Конечная длина,м

Абсолютное удлинение

Сила упругости

Жёсткость ,

tgα =k, Н/м

10. Выбрать систему координат и построить график зависимости проекции силы упругости F упр от удлинения пружины.

11. Измерить транспортиром угол между прямой и осью абсцисс.

12.По таблице найти тангенс угла.

13.Сделать вывод о величине жёсткости к 1 и занести результат в таблицу.

14.Закрепить пружину в штативе на полную длину и повторить опыт по пунктам 4-13.

15.Сравнить значения k 1 и k 2 .

16.Сделать вывод о зависимости жёсткости от параметров пружины.

К онтрольные вопросы .

1. На рисунке приведен график зависимости модуля силы упругости от удлинения пружины. По закону Гука определите жесткость пружины.

Указать физический смысл тангенса угла между прямой и осью абсцисс, площади треугольника под участком ОА графика.

2.Пружину жесткостью 200 H\м разрезали на 2 равные части. Какова жесткость каждой пружины.

3.Указать точки приложения силы упругости пружины, силы тяжести и веса груза.

4.Назовите природу силы упругости пружины, силы тяжести и веса груза.

5. Решите задачу. Для растяжения пружины на 4мм нужно совершить работу 0,02Дж. Какую работу нужно совершить, чтобы растянуть пружину на 4см?

При воздействии внешних сил тела способны приобретать ускорения или деформироваться. Деформацией называют изменение размеров и (или) формы тела. Если после снятия внешней нагрузки тело восстанавливает свои размеры и форму полностью, то такая деформация называется упругой.

Пусть на пружину на рис.1 действует растягивающая сила, направленная вертикально вниз.

При воздействии деформирующей силы ($\overline{F}$) длина пружины увеличивается. В пружине возникает сила упругости (${\overline{F}}_u$), которая уравновешивает деформирующую силу. Если деформация небольшая и упругая, то удлинение пружины ($\Delta l$) пропорционально деформирующей силе:

\[\overline{F}=k\Delta l\left(1\right),\]

где в качестве коэффициента пропорциональности выступает жесткость пружины $k$. Коэффициент $k$ называют также коэффициентом упругости, коэффициентом жесткости. Жесткость (как свойство) характеризует упругие свойства тела, подвергаемого деформации - это возможность тела оказывать противодействие внешней силе, сохранять свои геометрические параметры. Коэффициент жесткости является основной характеристикой жесткости.

Коэффициент жесткости пружины зависит от материала, из которого изготовлена пружина, ее геометрических характеристик. Так, коэффициент жесткости витой цилиндрической пружины, которая намотана из проволоки круглого сечения, подвергаемая упругой деформации вдоль своей оси вычисляется при помощи формулы:

где $G$ -модуль сдвига (величина зависящая от материала); $d$ - диаметр проволоки; $d_p$ - диаметр витка пружины; $n$ - количество витков пружины.

Единицы измерения жесткости пружины

Единицей измерения коэффициента жесткости в Международной системе единиц (Си) является ньютон, деленный на метр:

\[\left=\left[\frac{F_{upr\ }}{x}\right]=\frac{\left}{\left}=\frac{Н}{м}.\]

Коэффициент жесткости равен величине силы, которую следует приложить к пружине для изменения ее длины на единицу расстояния.

Жесткость соединений пружин

При последовательном соединении $N$ пружин жесткость соединения вычисляется при помощи формулы:

\[\frac{1}{k}=\frac{1}{k_1}+\frac{1}{k_2}+\dots =\sum\limits^N_{\ i=1}{\frac{1}{k_i}\left(2\right).}\]

Если пружины соединены параллельно, то результирующая жесткость равна:

Примеры задач на жесткость пружин

Пример 1

Задание. Какова потенциальная энергия ($E_p$) деформации системы из двух параллельно соединенных пружин (рис.2), если их жесткости равны: $k_1=1000\ \frac{Н}{м}$; $k_2=4000\ \frac{Н}{м}$, а удлинение составляет $\Delta l=0,01$ м.

Решение. При параллельном соединении пружин жесткость системы вычислим как:

Потенциальную энергию деформированной системы вычислим при помощи формулы:

Вычислим искомую потенциальную энергию:

Ответ. $E_p=0,\ 25$ Дж

Пример 2

Задание. Чему равна работа ($A$) силы растягивающей систему из двух последовательно соединенных пружин, имеющих жесткости $k_1=1000\ \frac{Н}{м}\ \ и$ $k_2=2000\ \frac{Н}{м}$, если удлинение второй пружины составляет $\Delta l_2=0,\ 1\ м$?

Решение. Сделаем рисунок.

При последовательном соединении пружин на каждую из них действует одна и та же деформирующая сила ($\overline{F}$), используя этот факт и закон Гука найдем удлинение первой пружины:

Работа силы упругости при растяжении первой пружины, равна:

Учитывая полученное в (2.1) удлинение первой пружины имеем:

Работа второй силы упругости:

Работа силы, которая растягивает систему пружин в целом, будет найдена как:

Подставим правые части выражений (2.3) и (2.4) в формулу (2.5), получаем:

Вычислим работу:

\[А=\frac{2000\cdot {({10}^{-1})}^2}{2\cdot 1000}\left(2000+1000\right)=30\ \left(Дж\right).\]

Ответ. $А$=30 Дж

Сила упругости — это та сила, которая возникает при деформации тела и которая стремится восстановить прежние форму и размеры тела.

Сила упругости возникает в результате электромагнитного взаимодействия между молекулами и атомами вещества.

Самый простой вариант деформации можно рассмотреть на примере сжатия и растяжения пружины.

На данном рисунке (x > 0) — деформация растяжения; (x < 0) — деформация сжатия. (Fx) — внешняя сила.

В том случае, когда деформация самая незначительная, т.е малая, сила упругости направлена в сторону, которая является противоположной по направлению перемещающихся частиц тела и пропорциональна деформации тела:

Fx = Fупр = - kx

С помощью данного соотношения выражен закон Гука, который был установлен экспериментальным методом. Коэффициент k принято называть жесткостью тела. Жесткость тела измеряется в ньютонах на метр (Н/м) и зависит от размеров и формы тела, а также от того, из каких материалов состоит данное тело.

Закон Гука в физике для определения деформации сжатия или растяжения тела записывают совершенно в другой форме. В данном случае относительной деформацией называется


Роберт Гук

(18.07.1635 - 03.03.1703)

Английский естествоиспытатель, учёный-энциклопедист

отношение ε = x / l . В то же время напряжением называется площадь поперечного сечения тела после относительной деформации:

σ = F / S = -Fупр / S

В данном случае закон Гука формулируют так: напряжению σ пропорциональна относительная деформация ε . В данной формуле коэффициент Е называют модулем Юнга. Данный модуль не зависит от формы тела и его размеров, но в то же время, напрямую зависит от свойств материалов, из которого состоит данное тело. Для различных материалов модуль Юнга колеблется в достаточно широком диапазоне. Например, для резины E ≈ 2·106 Н/м2, а для стали E ≈ 2·1011 Н/м2 (т.е. на пять порядков больше).

Вполне допустимо обобщить закон Гука и в тех случаях, когда совершаются более сложные деформации. Например, рассмотрим деформацию изгиба. Рассмотрим стержень, который лежит на двух опорах и имеет существенный прогиб.

Со стороны опоры (или подвеса) на данное тело действует упругая сила, это сила реакции опоры. Сила реакции опоры при соприкосновении тел будет направлена к поверхности соприкосновения строго перпендикулярно. Такую силу принято называть силой нормального давления.

Рассмотрим второй вариант. Путь тело лежит на неподвижном горизонтальном столе. Тогда реакции опоры уравновешивает силу тяжести и направлена она вертикально вверх. Причем весом тела считают силу, с которой тело воздействует на стол.

ЖЁСТКОСТЬ

ЖЁСТКОСТЬ

Мера податливости тела деформации при заданном типе нагрузки: чем больше Ж., тем меньше . В сопротивлении материалов и теории упругости Ж. характеризуется коэффициентом (или суммарным внутр. усилием) и характерной деформацией упругого тв. тела. В случае растяжения-сжатия стержня Ж. наз. коэфф. ES в соотношении e=P/(ES) между растягивающей (сжимающей) силой Р и относит. удлинением к стержня (5 - площадь поперечного сечения, Е - модуль Юнга, (см. МОДУЛИ УПРУГОСТИ). При деформации кручения круглого стержня Ж. наз. величина GIр, входящая в соотношение q=M/GIp, где G - модуль сдвига, Iр - полярный сечения, М - крутящий момент, q - относит. угол закручивания стержня. При изгибе бруса Ж. EI входит в соотношение c=М/Е1 между изгибающим моментом М (моментом норм. напряжений в поперечном сечении) и кривизной c изогнутой оси бруса (/ - осевой момент инерции поперечного сечения). В теории пластинок и оболочек пользуются понятием цилиндрич. Ж.: D = Eh3 12(1-v2), где h - толщина (оболочки), v - Пуассона коэфф. Ж. определяется также для нек-рых сложных конструкций.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ЖЁСТКОСТЬ

Способность тела или конструкции сопротивляться образованию деформаций. Если материал подчиняется Гука закону, то характеристикой Ж. являются модули упругости Е - при растяжении, сжатии, изгибе и G - при сдвиге. ES в соотношении e=F/ES между растягивающей (сжимающей) силой F и относит. удлинением e стержня с площадью поперечного сечения S. При кручении стержня круглого поперечного сечения Ж. характеризуется величиной GI р (где I p - полярный момент инерции сечения) в соотношении q=M/GI p , между крутящим моментом М и относит. углом закручивания стержня q. При изгибе бруса Ж., равная величине EI, входит в соотношение (=М/ЕI между изгибающим моментом М (моментом нормальных напряжений в поперечном сечении) и кривизной изогнутой оси бруса (,(где I - осевой момент инерции поперечного сечения), а при изгибе пластинок и оболочек под Ж. понимают величину, равную Eh 3 /12(l - n 2), где h - толщина пластинки (оболочки), n - коэф. Пуассона. Ж. имеет существ. значение при расчёте конструкций на устойчивость.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Антонимы :

Смотреть что такое "ЖЁСТКОСТЬ" в других словарях:

    Жёсткость воды совокупность химических и физических свойств воды, связанных с содержанием в ней растворённых солей щёлочноземельных металлов, главным образом, кальция и магния (так называемых «солей жёсткости»). Содержание 1 Жёсткая и… … Википедия

    Жёсткость: Жёсткость воды Жёсткость в математике Жёсткость способность материалов или тел сопротивляться возникновению деформации. Жёсткость магнитная в электродинамике определяет воздействие магнитного поля на движение заряженной частицы.… … Википедия

    Размерность L2MT 3I 1 Единицы измерения СИ вольт СГСЭ … Википедия

    жёсткость - см. жёсткий; и; ж. Жёсткость мяса. Жёсткость характера. Жёсткость сроков. Жёсткость воды … Словарь многих выражений

    Совокупность свойств воды, обусловленная наличием в ней преимущественно солей кальция и магния. Использование жёсткой воды приводит к осаждению твердого осадка (накипи) на стенках паровых котлов, теплообменников, затрудняет варку пищевых… … Энциклопедический словарь

    У этого термина существуют и другие значения, см. Жёсткость (значения). Жёсткость способность конструктивных элементов деформироваться при внешнем воздействии без существенного изменения геометрических размеров. Основной характеристикой… … Википедия

    жёсткость излучения - жёсткость воды — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом Синонимы жёсткость воды EN radiation hardnesshardnessHh …

    контактная жёсткость - жёсткость контакта — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы жёсткость контакта EN contact rigidity … Справочник технического переводчика

    Совокупность свойств, обусловленных содержанием в воде ионов Са2+ и Mg2+. Суммарная концентрация ионов Ca2+ (кальциевая Ж. в.) и Mg2+ (магниевая Ж. в.) называется общей Ж. в. Различают Ж. в. карбонатную и некарбонатную. Карбонатная Ж. в.… … Большая советская энциклопедия

    - (a. severity of weather; н. Scharfegrad der Wefferverhaltnisse; ф. rudesse du temps; и. rudeza del tiempo) характеристика состояния атмосферы, комплексно учитывающая температурное и ветровое воздействие на человека. Используется при… … Геологическая энциклопедия

    ЖЁСТКОСТЬ, жёсткости, мн. нет, жен. (книжн.). отвлеч. сущ. к жесткий. Жесткость характера. Излишняя жесткость воды делает ее негодной для питья. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 … Толковый словарь Ушакова




© 2024 globusks.ru - Ремонт и обслуживание автомобилей для новичков